Summary

A multi-institution research team has developed an optical chip that can train machine learning hardware. 

The Situation

Machine learning applications skyrocketed to $165B annually, according to a recent from McKinsey. But, before a machine can perform intelligence tasks such as recognizing the details of an image, it must be trained. Training of modern-day artificial intelligence (AI) systems like Tesla카지노 게임 컬렉션™s autopilot costs several million dollars in electric power consumption and requires supercomputer-like infrastructure. This surging AI 카지노 게임 컬렉션śappetite카지노 게임 컬렉션ť leaves an ever-widening gap between computer hardware and demand for AI. Photonic integrated circuits, or simply optical chips, have emerged as a possible solution to deliver higher computing performance, as measured by the number of operations performed per second per watt used, or TOPS/W. However, though they카지노 게임 컬렉션™ve demonstrated improved core operations in machine intelligence used for data classification, photonic chips have yet to improve the actual front-end learning and machine training process.

The Solution

Machine learning is a two-step procedure. First, data is used to train the system and then other data is used to test the performance of the AI system. In a new paper, a team of researchers from the George Washington 카지노게임사이트, Queens 카지노게임사이트, 카지노게임사이트 of British Columbia and Princeton 카지노게임사이트 set out to do just that. After one training step, the team observed an error and reconfigured the hardware for a second training cycle followed by additional training cycles until a sufficient AI performance was reached (e.g. the system is able to correctly label objects appearing in a movie). Thus far, photonic chips have only demonstrated an ability to classify and infer information from data. Now, researchers have made it possible to speed up the training step itself.

This added AI capability is part of a larger effort around and other electronic-photonic application-specific integrated circuits (ASIC) that leverage for machine learning and AI applications.

teaching chip

A picture of the chip used for this work.
(Credit: The George Washington 카지노게임사이트/Queens 카지노게임사이트 )

 

From the Researchers

This novel hardware will speed up the training of machine learning systems and harness the best of what both photonics and electronic chips have to offer. It is a major leap forward for AI hardware acceleration. These are the kinds of advancements we need in the semiconductor industry as underscored by the recently passed CHIPS Act.

카지노 게임 컬렉션” Volker Sorger, Professor of Electrical and Computer Engineering
at the George Washington 카지노게임사이트 and founder of Optelligence.

The training of AI systems costs a significant amount of energy and carbon footprint. For example, a single AI transformer takes about five times as much CO2 in electricity as a gasoline car spends in its lifetime. Our training on photonic chips will help to reduce this overhead.

카지노 게임 컬렉션” Bhavin Shastri, Assistant Professor of Physics Department Queens 카지노게임사이트.

Publication Information

The paper, was published today in the journal OPTICA. To schedule an interview with Dr. Sorger, please contact Cate Douglass at cdouglass@gwu.edu.

Article Category